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A Method for Indexing Powder Photographs, Using Linear Diophantine
Equations, and some Tests for Crystal Classes
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(Received 3 February 1949 and in revised form 18 March 1949)

An extension in scope and directness of the Hesse method for indexing powder photographs can be
made by direct solution of linear Diophantine equations. For most cases of tetragonal and hexa-
gonal crystals the extended method demands much less ingenuity than the original procedure. In
addition, some tests are devised to determine the crystal class by using Diophantine relations, and
by tests for linear dependence of vectors in a linear vector space. The latter method is more general
than the former and gives much more information concerning the crystal class.

Introduction

In a recent publication Hesse (1948) proposed a novel
method for indexing powder photographs. The most
important contribution by Hesse is the recognition that
the value of sin?6, = g, can be regarded as a kind of
hyper-number, similar to a complex number. In
particular, for the tetragonal and hexagonal classes,

he sets ¢;=M,A+N,C,
where the symbols have the following significance:

Tetragonal Hexagonal
M h? + k2 h2+hk+k?
N 12 12
4 §A%Jal §A%fa}
¢ 1A%/a 1A%fa?

Further, he notes that 4 and C can be regarded as
analogues of 1 and ,/( —1) of complex numbers so that
¢, can be represented by the quantities M; and N, i.e.

g; =[M;, N,
Then, provided 4 and €' are incommensurate, an equa-
tion relating several of the ¢’s, with m; integers,
myqy + Moy + Myq3 +... =0, (1)
requires that

my M, +my My+my Mg+ ... =0, (2a)
my N, +myNy+mgNg+... =0. (2b)

In addition he shows that an equation
MGy = My, (3)
which implies my M, = myM,, (3a)
my Ny =myNy (Ny =1, Ny =13, (30)

requires that /, =, =0 if m; and m, are relatively
prime and not both squares.

From these relations a relatively systematic pro-
cedure for indexing hexagonal and tetragonal powder
photographs follows. It is the purpose of this paper to
extend the method somewhat in scope and in directness

for these classes, so that the solution can be obtained
with little exercise of ingenuity once relations of the
form (1) and (3) have been found. A criterion is also
developed for assigning a crystal to one of three types:
(a) cubic; (b) tetragonal, hexagonal; (c) orthorhombic,
monoclinic, triclinic. A more direct method for indexing
tetragonal and hexagonal patterns also follows. Finally,
an even more powerful test for crystal class is developed,
based on linear dependence of vectors in a linear vector
space.
. General theory

It will be assumed that relations of the form (1) have
been found and fall within the possible limits of error
for the ¢ values as noted by Hesse. Quite generally
we have :

9= 1A% | R [?
= IA2(h2b2 4+ K2D3+ lfb§+kl_- k;2b, by cos By
+h;1;2b,bycos By +k;1;:2b,bgcos ),  (4)
in which the b’s are reciprocal-axis lengths and the #’s
are reciprocal-lattice axial angles. The quadratic form
in parentheses in the right-hand member of (4) repre-
sents a vector in the six-space with elements e,, e,, ¢,
ey, €5 and eg,
i = $A%(hie +kieo+1ies+hikieg+hilies+kilieg). (5)
The basis elements ¢; are

e, = b3, e, =2bb,cosf,,
e, = b2, e5=2b,bycos /)’2,} (6}
e; = b2, eg=2b,bscosp,.

We assume that the e; forms a linearly independent set,
i.e. no relation of the form

My ey +Myey+Mgeg+mye,+mses+mgeg =0 (7)
exists with the m’s integers and not all equal to zero.
This requirement is met except for cases such as a tetra-
gonal crystal having @, =a; or an orthorhombic
crystal having a, =a,, or a, =.3a, (pseudo-hexa-
gonal). If these exceptions occur, the crystal will be
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assigned a higher symmetry, but this is inevitable if
powder methods only are used.

If two of the bases, such as e; and e,, become equal,
they are to be considered as identical. With this in mind
we can list the form for the e’s for the various crystal
classes as shown in Table 1.

Table 1.

€1 €3 €3

- Cubic o b2 b2 b2
Tetragonal b} b2 b2
Hexagonal b2 b2 b2
Orthorhombic b b3 bZ
Monoclinic” b2 b3 b2
Triclinic - b, b3 b3

Following this convention, the g values for a cubic
crystal would be ¢ = $A%(A%+£k%+1?)e,, and similarly
for the other cases.

.We can now devise a test for crystal classes. Suppose
- we find relations of the form (3) with m, and m, con-
taining no common factor and not both squares. It
follows that the crystals cannot be orthorhombic,
monoclinie, or triclinic. An equation of type (3),
My ¢y, = My(y, TEQUIres

ol = my 3, (8-1)
m,y ki = myk3, (8-2)
m, 12 = m,l3, (8-3)
myhy by = mohyks, (8-4)
my by by = mohyly, (8-5)
my byl = mykyl,. (8-6)

Assuming that there are no accidental coincidences in
e values, there will be six equations, (8-1) to (8-6)
inclusive, for a triclinic crystal. For a monoclinic
crystal e, and e vanish and only (8-1), (8-2), (8-3), and
(8-5) enter consideration. An orthorhombic crystal has
e, = e; = ¢, =0 and only (8-1) to (8-3) inclusive need
be considered.

The equations (8-1) to (8-3) have no solution in
integers other than the trivial one

hy=hy=hy =hky=1 =1, =0.
"'This in turn requires
Boky = hoky = hyly = hyly = kyly = kyly = 0

:and 1 =¢=0.

Thus
= 32(h2e, +K2ey+Beg+ R kyey+hylies+ Ry lieg) =0,

and similarly for g,. This contradicts the fact that ¢,
‘and g, are not zero. This general proof for the triclinic
case includes the monoclinic and orthorhombic classes
-as special cases. For the latter two we merely omit from
‘consideration (8-4) and (8-6), or (8-4) to (8-6) inclusive.
This is equivalent to setting the corresponding e num-
“bers equal to zero.
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In the preceding argument we assumed that a relation
of form (3) could be found for triclinic, monoclinic and
orthorhombic crystals with non-degenerate e values.
This leads to the contradiction that both ¢ numbers
must vanish. Accordingly we conclude that a relation
of form (3) is impossible for these three crystal classes

Form of €’s for the various crystal classes

€ €5 €

0 0 0

0 0 0

b3 0 0

0 0 "0

0 2b,bg cos B, 0
2b,b, cos S 2b, bs cos S, 2b, b5 cos £,

if the e bases are non-degenerate. On the other hand,
equations of the following forms:

my (3 +k3) = my(h3+k3), (9-1)
- my (BB 1) = my(RG 4 K5+ 15), (9-2)
and my(h+h by + kD) = mg(h§+ by g+ 3), (9-3)

with m, and m, containing no common factor, and not
both squares, do have non-trivial solutions. The cubic
case corresponding to (9-2) is readily distinguished by
its simplicity of form and needs no further discussion.
Hence we see that if the e values are independent, the
presence of equations of type (3) permits the crystals
to be assigned to one of three types: () cubic; (b) tetra-
gonal or hexagonal; (¢) orthorhombic, monoclinic, or
triclinic. If no such relations are found after exhaus-
tive search, it is likely, but not certain, that the crystals
are of type (c).

Some discussion of the effect of accidental coin-
cidences of the e values is desirable. Suppose we con-
sider the triclinic case and let e, = e; = ¢;. The test still
succeeds since these coincidences leave equations (8-1)
to (8-3) unchanged; these have only the trivial solution,
and we are led to the contradiction ¢, = ¢,=0 as before.

Suppose e, = e, e; = e,, and that e, e,, e,, €, are
independent. Then a relation (3) requires

my(h3+hyky) = my(hG+hoky),
my (k3 + kyly) = mo(k3+ Faly),
mylf = myl3,
my byl = mohyl,.
The third of these relations requires that /; = [,=0. This
reduces the second relation to
mlk% =My kgs
which requires &, = k,=0. Finally this reduces the ﬁrst

relation to myh% = myhl,

which also has only the trivial solution A; = £,=0. In
this case the test still succeeds. Another set of coin-
cidences which can be resolved in the same manner and
for which the test succeeds is the following: e, in-

dependent, e, = €, = e;3¢€;, 63 = eg3€; OT ¢,.

A particular coincidence of e values for which the
present test fails is the following: e, = e,, e, = ¢;, and.
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e3 = e;. Non-trivial solutions for the resulting Dio-
phantine equations can be found.

Enhancement of symmetry

Some accidental coincidences of the e values can lead
to an apparent increase of symmetry, not in its true
sense, but with respect to the metrical properties of
the unit cell. The powder method, if.unaided by other
observations, provides measurements only of the
metrical properties of unit cells, and it might be desir-
able to introduce the idea of powder symmetry classes.

Suppose that we had a rhombohedral cell with
reciprocal-axis angles equal to 60°. The crystal cell
then has tetrahedral angles and corresponds to the
primitive cell of a body-centered cubic cell. We might
inquire whether or not these cases could be distinguished
by powder methods. The general rhombohedral cell
is expressible in terms of two bases ¢, and e;, whereas
the cubic cell requires only one base e,. Clearly, if
by = by = by, ) = B = f5 = 60°, the general quadratic
form requires only one e base. However, a complete
proof that this is representable by a cubic cell is
desirable.

For the special case of the rhombohedral cell above
€ =¢€ =e;=¢,=e;=¢e, and the quadratic form
becomes (h2+k2+12+hk+ki+-1h)e,. We may wonder
whether or not this quadratic form can ever assume a
value corresponding to one of the ‘forbidden lines’ of
a cubic pattern. It is well known that integers of the
form (8r+-7)4° cannot be represented as a sum of the
squares of three integers. The three square terms in the
quadratic form above cannot represent such numbers,
but we may wonder whether the cross product terms
would make this possible for a rhombohedral cell so
that it could be distinguished from a cubic cell. This
cannot occur.

The quadratic form (A2+4k%4-12+hk+kl+1R) is
positive definite, i.e. it is always positive, and can be
zero only when & =k =1=0. It is always possible to
transform such a form into a sum of squares with each
square having the same multiplier, g. Thus the form is
reducible to g(H2+ K2+ L?). In addition, this particular
form is one such that (H, K, L) will also be integers, and
g has a value §. The multiplier ¢ is combined with e,
(rhombohedral) giving %e, the basis element for the
cubic representation:

(R k2424 hk+kl+1h)e, = H(H2+ K2+ L?) ¢,

= (H2+ K2+ L¥e).
Thus we see that the rhombohedral cell is metrically
equivalent to a cubic cell and is indistinguishable by
powder methods alone (at a fixed temperature, etc.).
If other data—such as optical data—were available, the
ambiguity might be resolved.

A similar case is provided by a rhombohedral cell
with the crystal cell angle 60°, which has tetrahedral
reciprocal-cell angles. This is equivalent to a face-
centered cubic cell and would be indexed as such using
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only powder data. The rhombohedral quadratic form
for this case is
(B2 k%4 12— 2hk — 2kl — 31h) e,

which can be reduced to %(H24 K2+ L?)e, in cubic
form. A recent report shows that precisely this case has
occurred for NiO. This has long been called cubic with
the NaCl structure, but the recent investigation by
Rooksby (1948) shows that line splitting occurs as the
temperature is lowered and that the lattice is really
rhombohedral. At higher temperatures degeneracy
occurs with an apparent increase in powder symmetry.

Solution of linear Diophantine systems

There is a well-known theorem concerning equations
of the forms (10-1)

(10-2)
when we require the values of m,, m,, m,, z, y, 2z to be
integers. The second equation (10-2), which might be
called a reduced equation, is obtained by setting myz = 1
in equation (10-1). The corresponding integral solutions
z,y of the reduced equation, if such exist, are denoted
by x*, y*. The theorem states that if m, and m, (integers)
contain no common factor, and if m4z is not zero, then
there are an infinite number of integral solutions «, y, 2
for such equations. The solutions for the general equa-
tion (10-1) can be constructed from the general solutions
of the reduced equation (10-2). Particular solutions of .
(10-2) can be found by inspection or by the Euclidean
division algorithm (Fine, 1904, pp. 212, 342; Wright,
1939, pp. 3-6).

Let 2%, y° be a particular solution of (10-2), i.e. some
pair of integers satisfying (10-2) with m,, m, relatively
primé. Then the general solution of the reduced
equation (10-2) is

My T+MyYy = myz

and myx* +myy* =1,

x* = 20— m,t, (11-1)
y* =y’ +mt, (11-2)

where £ is any integer. It follows that the general solu-
tion of (10-1) is

x = mgyzx* = myz(x®—myt), (12-1)
(12-2)

Since 20, y°, m,, my, ms, t, 2 are integers, the values of
z, y will also be integral.

This method can be used to solve equations of the
form (2), expressing all of the remaining M’s and N’s
in terms of some M; and N; which are known to be
different from zero. In the example to follow, only three-
term equations like (10-1) were used, but methods for
four- ‘and higher-term equations are equally simple.
When solving equations of the form (10-1) it must be
remembered that m, and m, must have no common
factor if the previous methods are to apply. In the
event thatm, and m, have a common factor, then either
(@) the factor common to m,, m, must also be a factor of
mg2, or (b) no integral solution other thanz =y =2=10
exists. These facts are of use in solving equations of

Y = myzy* = my2(y°+m,t).
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the form m, M,+my, M, = ms3 M4 This case may arise
for a tetragonal or hexagonal crystal with few powder
lines so that no equations of form (3) are found, or if

the ¢ values related by an equation of form (3) appear
in no other equations.

Tetragonal and hexagonal crystals
To demonstrate the method, we will use the data and
relations presented by Hesse (1948) for the substance
W,B. These data and relations are:

¢, = 0-0847, ¢, =0-2698, ¢, = 0-4025,
g, = 01694, g5 = 0-3179, gy = 0-4229,
gs = 02334, g¢,=0-3384, ¢, =05724,
for which Hesse found the independent relations
(@) 29, = g, @) 6+ =0 .
0) it =95 (&) ©td=4ds
(¢) 2¢; =g (f) g2+497 =49
and the dependent relations
9) g6 = 441, () g5 =5,
() g7 =q3+2q1, (J) 99 = s+

We note that no relation including ¢, was discovered.

First we note that rélations (a), (c), (9) and (¢) are of
form (3), and hence we conclude that the crystals are
cubic, tetragonal, or hexagonal. The cubic case is ruled
. out since the ¢’s are not of the form }A2b3(h2+k2+12).
Accordingly only the tetragonal and hexagonal classes
remain for consideration, but no assumption need be
made as to whether it is one or the other.

On the basis of (a), (¢), (g) and (¢) we find

4= [MDO]’ 9 = [M2»0]> 9 = [MG’O]s gg = [Méao]s

exactly as Hesse did. We now solve for the other M’s in
terms of M, the smallest non-zero M. Clearly M,, M,,
Mg and Mg cannot be zero, since the contrary assump-
tion requires ¢; = ¢, =g = ¢z = 0.

Relations (b), (d) and (f) require

Ny=N,=N,=N,,

since N, = 0, and we have

s = [Ms, N3l, g, =[M;, Ng),
=[M5 Ngl,. gy =[My, Ns).
Next we solve equation (b) ¢:1+93 =¢s.
' —M3+Ms=M,, (13-1)
~Mi+ME=1. (13-2)

A partlcular solution of (13-2), found by inspection, is

M% =0, M) =1. Then
M¥=M3+i=t,
MEF=MI+i=1+t,
and J‘if3 M,t, = [M,t,N,],
My = M,(1+1), q5=[M1(1+t),Ns]-

Simila,rlyA we solve equation (d): ¢,+¢; = ¢q;; finding
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My =Mt and M, = M,(1+t'). By the previous step
M, = M,(1+¢) and we find ¢’ = 1+¢. Then
M, = M2+t and g, =[M,(2+1),Ng].

Equation (f) leads to
M,=M,t' and My= M, (1+t)
and hence to
My, =M, t'(2+18), My= M, (1+¢)(2+1).

We further see that ¢’ must be unity or greater; ¢’ cannot
be zero since M, cannot be zero (N, = 0). The forms
of ¢, and g, are

= [M,1'(2+1),0] and gy =[M,(1+¢')(2+1), N,].
Solvi_ng equation (e) we find

= [M,¢",0] and ¢qg=[M,(1+£"),0],

and we note that £ must be unity or greater. Finally
equation (j) leads to

M, = M,4" and M,= M 4(1+t").
In previous steps we found
My=M,t and M,= M,(1+t)2+1).

Equating - these separate results we have relations
between the various #’s:

4" =t and 4(1+1") = (1+8)(2+1).

Replacing ¢ by 4¢” in the second and rearranging, we
have 9

grreTe
The only value of ¢” which permits ¢’ to be an integer is
t" =0. Hence t"=0, ¢ =0, t' = 1. Solving equation
(9) (or by inspection) we find My =4M, =¢"M,, so

"

that ¢” = 4. Hence Mg = M,(1+¢") = 5M,.
The form of all ¢’s except ¢, is now determined:
¢ = [M,,0], g6 = [4M,,0],
92 =[2M,,0], ¢q;= [2M,, N,],
g3 = [0, Ng], g5 = [6M, 0],
g5 = (M, Ns), = [4M,, N;].

The sequence of M values corresponds to a tetragonal
crystal with M, =1,2,4,5,8,9, ...

M,=1 (hk)=(1,0),
M, =2 (hk)=(1,1),
M,=4 (hk)=(2,0),
etc., .
and with N3 =1[%=1,4,9,.... Clearly N, cannot be

zero since M, = 0. The sequence of M values does not
match any sequence for a hexagonal crystal.

To determine which choice of M, and Ny is the sim-
plest permissible, it is necessary to introduce g, into
the scheme. Diligent search would lead to the equation
10g, + g5 = 4q,. If this relation had not been found, we
could proceed by a trial-and-error procedure.

First we note that

ga=02698 and g = [0,N;] = 0-2334,
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and conclude that g, is not of the form [0,mN,] nor of
the form [0, %] for any small values of I, and I,. We also
note that g, is not of the form [M,,0] if M, and M, are
any of the small integers of the form a?+52. Accord-
ingly we conclude that g, must be of the form [#,, N,].
If we let M, and N, assume possible low-order values,
" we find that the pair (M,, N,) equal to (2,4) permits

N,
g, to be fitted to the form [5 %, Zs:l and the problem

is solved.
7, =[(2,0] (110)  ¢g=[8,0] (220)
9 =[4,0] (200) ¢, =[4,4] (202)
g3 =[0,4] (002) ¢z =[10,0] (310)
¢, =1[5,1] (211) ¢, =[8,4] (222)
g5 =[2,4] (112)

Additional useful relations
If we find a pair of relations of the form

(te=9 9219% =4 (14)
then the crystals cannot be orthorhombic, monoclinic,
or triclinie, but can be cubic, tetragonal, or hexagonal.
This follows from a well-known theorem (Carmichael,
1915, p. 14) concerning simultaneous Diophantine
forms. The theorem states that the equations

Pyt =22, Y+t =4p (15)

have no solution in integers unless at least one is zero.
The only integral solutions are y =0, z =z =, and
=y =2=1t=0. The remainder of the proof follows
that given for equations of type (3). That cubic, tetra-
gonal and hexagonal crystals can satisfy the equations
(14) is easily verified. The proof that cubic and tetra-
gonal crystals can satisfy the simultaneous equations
(14) follows from the theorem that any integer is expres-
sible as a sum of four squares. ‘

When hexagonal crystals satisfy the simultaneous
equations (14), they also simultaneously satisfy a more
. severe set of conditions. It can easily be verified by
inspection that if the first pair of the following equations
are satisfied then the second pair can also be satisfied
for some set of integers which satisfy the first pair:

(R +hykey+5D) + (B + ho ko + k) = (R +hgks+k3),
(B3 +hoky + 3) + (B3 + gy + £5) = (R +hyky+15), | (16)
by +hy = hy+ kg, j

hot+hy = hy+ky.
An example of a solution to the above equations is
(hpkl) = (0) ]-)’ (kz’ kz) = (47 _2);

(hg, k) = (1,3) and (A, k,) = (5,0).

Linear dependence relations
In the first section of this paper it was shown that
the numbers ¢ can be regarded as vectors in a linear
vector space of one, two, three, four, or six dimensions
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corresponding to the cubic, tetragonal or hexagonal,
orthorhombic, monoclinic, and triclinic classes of
crystals. This implies that the maximum number of
linearly independent vectors (¢ numbers) is equal to
the dimensionality of the vector space. Thus, if the
crystal is cubic, all of the ¢ numbers can be expressed
as a rational multiple of any one of the ¢ numbers. For
a tetragonal (or hexagonal) crystal, rational linear com-
binations of two ¢ numbers will generate all the remain-
ing ¢ numbers. Corresponding combinations of three,
four, or six ¢ numbers will generate all the ¢ numbers
for the orthorhombie, monoclinic, or triclinic classes if
the e numbers are non-degenerate. These considerations
make possible a direct test for crystal classes which is
distinct from the previous tests based on Diophantine
forms and is more powerful than the previous tests
since any relations of form (1) will serve; special rela-
tions of form (3) are not needed.

To perform the test we obtain all of the ¢ numbers
as before and obtain all independent relations of form
(1). For the present purpose we include more relations
than are used for the analysis using Diophantine forms.
In particular we include relations among four or more
of the ¢ numbers (which satisfy the predetermined
limits of error), so that the maximum possible number
of relations is at hand. If the number of ¢ numbers
exceeds the number of relations by six, then the test
fails. However, this case will not arise if all relations
have been found.

Suppose that we have o ¢ numbers and that we have
found g relations of form (1). We write the coefficients
m; of the relations in matrix form

My My My My

=(m)
My Mgy
and then determine the rank of the resulting matrix.
The rank of the matrix is the order of the largest non-
zero determinant contained in the matrix. If the rank
of the matrix is r, then r of the ¢ numbers can be ex-
pressed as rational linear conbinations of the remaining
(¢—r) g numbers. Then (e —r) is the number of linearly
independent ¢ numbers or the order of the vector space.
When the matrix (m) is being written, we can omit
any relations of form (1) which are implied by other
relations which we include in it. If, for example, we
have relations

2¢,—9:=0, 2¢,—q,=0, 4¢,—¢q,=0,

then any two imply a third of these. The rank of matrix
(m) is not altered by including or omitting a relation
implied by others which are included.

Having found the number (o —r) of linearly indepen-
dent ¢ numbers, in principle we could then find the e
numbers which are the bases of the vector space. Sup-
pose that the vector space turns out to have six dimen-
sions and that ¢, ¢s, ..., g; are a linearly independent
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set of vectors covering the spa,ce" by rational linear
combinations. Each of these ¢ numbers is of the form

¢ = Quer+ Quaa+ .- + Qo
or in general in matrix form

(741 @n Qe €

9z . €

Bl=1 - 1. 17
9 . €4 (7
qs . €s

qs Qe @6 €6

The rank of matrix (@) must be six since the six ¢
numbers are linearly independent, and hence the
determinant of the matrix (@) does not vanish. This
insures the existence of a matrix (Q!), the matrix
inverse to (Q); i.e.

(@)(Q) = (&)=
If we then multiply the matrix equation (17) by (@1)
by left-multiplication, we-will have solved for the e bases
of the vector space,

(@) (g) = (@) (@) (e) = (E)(¢) = (o).
Actually we cannot perform the calculation implied by
(19) until we know the elements of the matrix (Q). This
does not affect the argument since we assert only that
a non-singular (¢)) matrix exists, and that this insures
the existence of the set of e bases once a set of linearly
independent ¢ numbers is found.

As an example of this method, we can refer to the
second tetragonal crys’oal example presented by Hesse,
that for Mo—B. The previous tests based on Diophantine
forms fail to determine the class of this powder pattern
since no relations of suitable form are found. Hesse
found three relations

@ +9%—9:=0, ¢ +2¢.—
“with the matrix

10 1-10
1 2-2 0 0>=(m).
01 0-21

It is easily verified that no third-order determinant con-
tained in this matrix vanishes, and that there are among
the set gy, ¢ ¢35, ¢; and g only two linearly independent
g numbers. Hence the crystal is at least tetragonal or
hexagonal. To establish the class completely, we need
to find more independent relations since there are eleven
g numbers listed by Hesse. Six additional independent
relations were found (with a maximum deviation from
zero of 0-0003). They are

didgonal identity matrix. (18)

293 =0, ¢3—2¢;+¢s=0,

79, 4+ 96— 2¢; = 0 (0-0003)

g5+ 295 —2g5 = 0 (0-0000)

61+ 95 +95—gs = 0 (0-0002)

91— +91—q5— g7+ = 0 (0-0002)

93— qs— 95+ s+ 99— %10 = 0 (0-0000)
29— 2g5+ g5 — 295+ ¢y, = 0 (0-0001)

(19)

v
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The complete matrix for the system then is readily
shown to have rank nine, and hence all relations are
independent, and only two of the eleven ¢ numbers are
linearly independent. This confirms the class of the
crystal as tetragonal or hexagonal. We have definitely
excluded the orthorhombic, monoclinic, or triclinic
classes if no accidental coincidences among the e
numbers occur.

It is not necessary to evaluate all of the sub-deter-
minants contained in the matrix in order to determine
its rank. There is a theorem which states that the rank
of a matrix is unchanged if the elements of a row
(column) are added to the corresponding elements of
another row (column) of the matrix (Bocher, 1907,
chs. 3, 4, 5). By use of such elementary transformations
the matrix is readily transformed to the equivalent
matrix
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which clearly has rank nine. (This transformation was
performed very quickly and was accomplished in
nineteen steps. Fewer steps would suffice since we need
zeroes only on one side of the non-zero diagonal.) V

Another procedure which suggests itself is to examine
a subset of equations, such as the first three listed for
this example, and to express the dependent ¢ numbers
in terms of the linearly independent ones. Thus we can
express g, ¢4 and g as linear combinations of ¢, and g,.
These are then substituted in the remaining equations
to see whether or not they are satisfied. If the original
set (¢y, ¢; in this case) of ¢ numbers is a complete set,
then all the remaining ¢ numbers will be expressible
as some linear combination of them. If not, then it will
not prove possible by these substitutions to-express
the remaining ¢ numbers in terms of ¢, and g,, and the
set will have to be augmented.

If this variation is employed, care. must be exercised
to make sure that the original subset, selected as being
linearly independent, does not actually contain more
g numbers than are really needed. This case could arise
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if, for example, we had a tetragonal crystal and a subset
of three relations among six ¢ numbers. For this subset
we would necessarily find at least three independent
¢ numbers, whereas actually only two are needed. If
we solved for three of the ¢ numbers in terms of the
remaining three and then substituted these results in
the remaining relations, they would necessarily be
satisfied. We might then erroneously conclude that the
crystal was orthorhombic. In the example worked out
above, using this short procedure we found two in-
dependent ¢ numbers (confirmed by the full procedure).
We might have been in error when we called the crystal
tetragonal or hexagonal. It conceivably could be cubic
on the basis of the subset of three relations with only
one of the ¢ numbers being linearly independent. This
would require that a lineaf dependence relation exist
between ¢, and g, of the form m,q, = m,q,. Since no
such relation exists, the short procedure was valid in
this case.

In seeking the additional relations among the ¢
numbers needed for the linear dependence test, tables
were prepared of: (a) multiples of the ¢’s up to 10g;
®) Gr1 =5 ©) Grie—5 @) Trss—9i5 (€) Tuva—Ti5
(f) 241, — g ete. The next step consists in examining
these tables for numbers which are equal within the
permitted limits of error. For the present purpose this
limit was set at 0-0003 in sin24. If the limit is not made
so small, accidental equalities of a spurious nature
will be listed and the procedure will fail. As Hesse has
stated, the use of focusing cameras is almost a necessity.

The relation 7g;+gg—2g, =0 (0-0003) was found
by noting that the quantity 2¢,— ¢, was equal to 7¢;.
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The relation g¢;—q,—ge+95+799~g10 = 0 (0-0000) was
found by noting that (g0 —gy) + (92— 95) = (95— s)- Simi-
larly 2(ggs—ge) = g5 becomes g5+ 2g,—2g5 = 0 (0-0000).
The equality (gy;—ge) = 2(95—g2) +(go—gs) becomes
25 —2g3+g5— 29y +gy; = 0 (0-0001). It is possible to
guard against spurious relations by cross checking to
see whether they imply relations which are not of the
desired precision. Thus the relation (spurious)
9s—9s = 97— q5 (0-0004) was rejected because of the
relation 2(gs—g¢) = g5 (0-0000). These relations, if both
correct, taken together require 2(g;—g5) = 2(¢; —gs), or
2q, = 3g;5. The latter is not correct since 2¢, = 0-8722,
while 3g¢; = 0-8730, the difference 0-0008 being far
outside the acceptable range. The rejection of
gs— s = 97— also implies rejection of gs— g7 = ¢ —¢s-

It must be emphasized that the selection of these
relations must be done with care, since this is the only
point in the procedure at which observational or sub-
jective errors enter. The outcome of the remainder of
the procedure is completely dependent on the care used
at the start.
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An Extended Table of Atomic Scattering Factors

By H. ViervorL anp O. Ocrmm
The Physical Institute of the University in Oslo, Norway

(Received 14 February 1949 and in revised form 5 May 1949)

A table of atomic scattering factors is given for the elements H to Cu for values of (47 sin 8)/A up to 30.

In applying the sector method of electron diffraction
(Viervoll, 1947) we have for some time made use of new
tables of atomic scattering factors, f, which cover a
greater range of (sin #)/A than the corresponding tables
used by the X-ray drystallographers. Our f values
(Table 2) are given as functions of s =1(4msin 8)/A (A.™1),
where 6 is the Bragg angle.

The calculations of the f values are mainly based on
those of James & Brindley (1931), who give the functions
for values of s up to about 14. We have extended the
s range to 30. For our purpose we did not find it neces-
sary to apply wave functions ‘with exchange’ which

AC2

would introduce very small effects for higher s values.
These effects would be somewhat greater for smaller
s values (Brindley & Ridley, 1938), but may still be
assumed to be without significance for ordinary struc-
ture determinations.

The atomic scattering factor may be ‘considered as
a sum of electronic scattering factors, each of which
corresponds to an electron of the atom. James &
Brindley found that a suitable linear transformation of
the s scales could bring the scattering factors of the
same electron group (same 7 and I) in different atoms to
coincide very closely.
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