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An extension in scope and directness of the Hesse method for indexing powder photographs can be 
made by direct solution of linear Diophantine equations. For most cases of tetragonal and hexa- 
gonal crystals the extended method demands much less ingenuity than th 9 original procedure. In 
addition, some tests are devised to determine the crystal class by using Diophantine relations, and 
by tests for linear dependence of vectors in a linear vector space. The latter method is more general 
than the former and gives much more information concerning the crystal class. 

Introduction 
In  a recent publication Hesse (1948) proposed a novel 
method for indexing powder photographs.  The most  
impor tan t  contribution by Hesse is the recognition tha t  
the value of sin e 0~ = q~ can be regarded as a kind of 
hyper-number ,  similar to a complex number.  In  
particular,  for the te tragonal  and hexagonal  classes, 
he sets qi ---- M i A  + N i C, 

where the symbols have the following significance: 

Tetragonal  Hexagonal  

M h 2 -t- ]c e h 2 + hk + ]ce 

N 1 e I e 

A _,.~el,,e ~;¢la~ 4 "~  1~1 

Fur ther ,  he notes tha t  A and C can be regarded as 
analogues of 1 and ~/( - 1) of complex numbers  so t ha t  
qi can be represented by the quantit ies M i and Ni,  i.e. 

qi "= [Mi, Ni]. 

Then, provided A and C are incommensurate,  an equa- 
t ion relating several of the q's, with m~ integers, 

ml ql + m e  q2 -{- m3  qa + . . . .  0,  (1)  

requires t ha t  

m 1 M 1 + m~ M 2 + m a M 3 + . . . .  0, (2 a) 

m l N  1 + m e N  e + m a N  3 + . . . .  O. (eb) 

In  addit ion he shows tha t  an equation 

mlq  1 = meq~ , (3) 

which implies m 1 M 1 = m~ M e, (3 a) 

m l N  1 : m e n  2 ( / V  1 : l~, N e = l~), (3b) 

requires t ha t  11 = 12 = 0 if m I and m e are relatively 
prime and not both squares. 

F rom these relations a relatively systematic  pro- 
cedure for indexing hexagonal  and te t ragonal  powder 
photographs  follows. I t  is the purpose of this paper  to 
extend the method somewhat  in scope and in directness 

for these classes, so t ha t  the solution can be obtained 
with little exercise of ingenuity once relations of the 
form (1) and (3) have been found. A criterion is also 
developed for assigning a crystal  to one of three types:  
(a) cubic; (b) te t ragonal ,  hexagonal;  (c)orthorhombic,  
monoclinic, triclinic. A more direct method for indexing 
te t ragonal  and hexagonal  pat terns  also follows. Finally,  
an even more powerful test  for crystal  class is developed, 
based on linear dependence of vectors in a linear vector 
space, 

General theory 
I t  will be assumed tha t  relations of the form (1) have 
been found and fall within the possible limits of error 
for the q values as noted by  Hesse. Quite generally 
we have 

= ¼ elh I e 
_ _  ~2/ /~2~e  e e 2 2 COS~ 3 
- -  ~,t ~,~i,,1T kibe- t - l ibaThiki2blb2 

+hil i2blbacosfle-Fkil i2bebacos/~l) ,  (4) 

in which the b's are reciprocal-axis lengths and the/? ' s  
are reciprocal-lattice axial angles. The quadrat ic  form 
in parentheses in the r ight-hand member  of (4) repre- 
sents a vector in the six-space with elements el, ee, e3, 
e4, e 5 and e6, 

= 1  2 2 2 3 qi ~/~ (hiel-t-]ciee-Fl~,ea+hi]cie4-i-hilies-t-]cilie6). (5)) 

The basis elements ei are 

e I = b~, e4 = 2blbecosfl3,] 

e e -~- b 2, e 5 = 251 b 3 COS f i e , [  (6)  

e z = b~, e 6 = 2bebacos f l r )  

We assume tha t  the ej forms a linearly indep.endent set, 
i.e. no relation of the form 

m l e l T m e e 2 + m a e z + m 4 e 4 + m s e s + m 6 e 6  = 0 (7) 

exists with the m's integers and not  all equal to zero. 
This requirement is met  except for cases such as a te t ra-  
gonal crystal  having a 1 = a s, or an  orthorhombic 
crystal  having a 1 = a e, or a 1 = ~/3a2 (pseudo-hexa- 
gonal). I f  these exceptions occur, the crystal  will be 
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assigned a h igher  s y m m e t r y ,  bu t  this  is inevi table  ff 
powder  me thods  only are used. 

I f  two of the  bases, such as e~ and  e~., become equal,  
t h e y  a r e t o  be considered as identical .  W i t h  this  in mind  
we can list the  fo rm for the  e's for the  var ious  crys ta l  
classes as shown in Table  1. 

I n  the  preceding a r g u m e n t  We assumed  t h a t  a re la t ion 
of  fo rm (3) could be found  for triclinic, monoclinic a n d  
o r thorhombic  crysta ls  wi th  non-degenera te  e values .  
This leads to the  cont radic t ion  t h a t  bo th  q n u m b e r s  
m u s t  vanish.  Accordingly  we conclude t h a t  a re la t ion  
of  form (3) is impossible for these  three  c rys ta l  classes 

Table  1. F o r m  o f  e's f o r  the var ious  crystal  classes 

e l  e 2 e3 

Cubic 52 b~ b~ 
Tetragonal b~ b~ b~ 
Hexagonal b~ b~ ba ~ 
Orthorhombic b~ b~ b~ 
Monoclinic" b~ b~ b~ 
Triclinic . b~ ~. b~ b~ 

Following this  convention,  the  q values for a cubic 
crys ta l  would  be q = ¼he(h e + lc ~ + l ~) e~, a n d  s imilar ly  
for the  o ther  cases. 

• We can now devise a tes t  for c rys ta l  classes. Suppose 
we fred relat ions of the  fo rm (3) wi th  m~ a n d  m~ con- 
raining no common fac tor  and  no t  bo th  squares.  I t  
follows t h a t  the  crysta ls  cannot  be or thorhombic ,  
monoclinic,  or triclinic. An  equa t ion  of t y p e  (3), 
m~ ql = m2q~, requires  

~ h ~  = ~eh~,  (8-1) 

~ = ~ e ~ ,  (8-2) 

m ll~ = m~l~, (8-3) 

m 1 h 1 k 1 -= m~.h~ k2, (8-4) 

m 1 h~ l~ = m~ h e l~, (8-5) 

m lk~ 11 = m~. 1% l~. (8-6) 

Assuming  t h a t  t]aere are no accidenta l  coincidences in 
e values,  there  will be six equat ions ,  (8-1) .to (8-6) 
inclusive, for a triclinic crystal .  Fo r  a monoclinic 
crys ta l  ea a n d  % vanish  and  only (8-1), (8-2), (8-3), and  
(8-5) enter  considerat ion.  An  or thorhombic  crys ta l  has  
ea e 5 = e6 = 0 and  only (8-1) to (8-3) inclusive need 
be considered. 

The equat ions  (8-1) to (8-3) have  no solution in 
in tegers  o ther  t h a n  the  t r iv ia l  one 

h 1 =  h~ = / c  1 = k~ = 11 = l~ = 01 

' This in t u r n  requires  

hi k~ -- h2 k e = h 1 l~ -- h~ 12 -- k~ l~ -- k e 12 = 0 

: aad  ql = q~. = 0. 

Thus  

• ql = l~e(h.~ ~ + k~ ~ + ~ ~3 + h~ ~1 ~, + hi ~ ~ + ~ ~1 ~.) = 0, 

and  similar ly for qe. This cont radic ts  the  fac t  t h a t  q~ 
a n d  q~. are not  •zero. This general  proof  for the  tr icl inic 
case includes the  monoclinic and  o r thorhombic  classes 
a s  special cases. Fo r  the  l a t t e r  two we mere ly  omit  f rom 
cons ide ra t ion  (8-4) a n d  (8-6), or (8-4) to (8-6) inclusive. 
This is equiva len t  ~o set t ing the  corresponding e num-  

• bers equal  to zero. 

e4 e 5 .e6 

0 0 0 
0 0 0 
b~ 0 0 
0 0 0 
0 2bib a cos ~2 0 

2bib ~ cos fla 2blba cos/?~. 2b~ba cos fll 

ff the  e bases are non-degenera te .  On the  o ther  hand ,  
equa t ions  of  tke  following forms:  

m l ( h  ~ + k~) = m2(h~ + k~), (9-1) 

= m2(h 2 + k~ + l~), (9-2) 

and  m ~ ( h ~ + h l k l + k ~ )  = m 2 ( h ~ + h 2 k 2 + k ~ ) ,  (9-3) 

wi th  ml  and  m~ containing no common  factor ,  a n d  no t  
bo th  squares,  do have  non- t r iv ia l  solutions. The cubic 
case corresponding to (9-2) is readi ly  dis t inguished b y  
its s implici ty  of  form and  needs no fu r the r  discussion. 
Hence  we see t h a t  if  the  e values are  independent ,  the  
presence of equat ions  of t y p e  (3) permi t s  the  crys ta ls  
to  be assigned to one of three  types :  (a) cubic;  (b) t e t ra -  
g o n a l  or hexagonal ;  (c) o r thorhombic ,  monocl inic ,  or 
triclinic. I f  no such relat ions are found  af te r  exhaus-  
t ive search, it  is likely, bu t  no t  certain,  t h a t  the  crys ta ls  
are of t y p e  (c). 

Some discussion of  the  effect of  accidenta l  coin- 
cidences of the  e values is desirable.  Suppose we con- 
sider the  triclinic case and  let % = e 5 = %. The tes t  still  
succeeds since these coincidences leave equat ions  (8-1) 
to (8-3) unchanged ;  these have  only the  t r iv ia l  solution, 
and  we are led to the  cont radic t ion  ql = qg.--- 0 as before. 

Suppose ea = e 1, e 6 = e~., and  t h a t  el, e2, % e 4 are  
independent .  Then  a re la t ion (3) requires  

U l ( h  ~ + h 1 lcl) = m~(h~ + h~]c~), 

• , m l ( k ~ ÷ k l l l )  = m2(k~÷kel2)  , 

m 11~ = m21 ~, 

m 1 h 111 = m2h  e le. 

The th i rd  of these  relat ions requires  t h a t  11 = 12_-- 0. This 
reduces  the  second re la t ion to 

m ~  = n~k~, 
which r equ i re s /q  = k~--- 0. F ina l ly  this  reduces the  first  
re la t ion to m 1 h~ = m~.hl, 

which also has  only the  t r iv ia l  solution h~ -- h ~ - 0 .  I n  
this  case the  tes t  still succeeds. Ano the r  set of  coin- 
cidences which can be resolved in the  same m a n n e r  a n d  
for which the  tes t  succeeds is the  following: e a in- 
dependen t ,  e~ = e 4 = e 5 4 el, e3 = e6 4 el or  e 2. 

A par t i cu la r  coincidence of  e values for which the  
present  tes t  fails is the  following: e a = e4, e~. -- e6, a n d  
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e 3 = e 5. Non-tr ivial  solutions for the resulting Dio- 
phant ine  equations can be found. 

Enhancement  of  symmetry  

Some accidental  coincidences of the e values can lead 
to an apparent  increase of symmetry ,  not in its true 
sense, but  with respect to the metrical  properties of 
the unit  cell. The powder method, i f .unaided by other 
observations, provides measurements  only of the 
metrical  properties of uni t  cells, and it might  be desir- 
able to introduce the idea of powder symmet ry  classes. 

Suppose tha t  we had a rhombohedral  cell with 
reciprocal-axis angles equal to 60% The crystal cell 
then has te t rahedral  angles and corresponds to the 
primit ive cell of a body-centered cubic cell. We might  
inquire whether or not these cases could be distinguished 
by powder methods. The general rhombohedral  cell 
is expressible in terms of two bases e 1 and e4, whereas 
the cubic cell requires only one base e~. Clearly, i f  
bl = b2 = bz, fit =/72 =/?3 = 60°, the general quadrat ic  
form requires only one e base. However, a complete 
proof tha t  this is representable by a cubic cell is 
desirable. 

For the special case of the rhombohedral  cell above 
e ~ = e  2 = e  3 = e 4 = e  5 = e  6, and the quadrat ic  form 
becomes (h ~ + k ~ + 12 + hk  + kl + lh) e 1. We m a y  wonder 
whether or not this quadrat ic  form can ever assume a 
value corresponding to one of the ' forbidden lines '  of 
a cubic pattern.  I t  is well known tha t  integers of the 
form ( 8 r + 7 ) 4  s cannot be represented as a sum of the 
squares of three integers. The three square terms in the 
quadrat ic  form above cannot represent such numbers,  
but  we m a y  wonder whether the cross product terms 
would make this possible for a rhombohedral  cell so 
tha t  it could be distinguished from a cubic cell. This 
cannot occur. 

The quadrat ic  form (h ~ + lc ~ + 1 ~ + hlc + kl + lh) is 
positive definite, i.e. i t  is always positive, and can be 
zero only when h =/~ = 1 = O. I t  is always possible to 
t ransform such a form into a sum of squares with each 
square having the same multiplier,  g. Thus the form is 
reducible to g(H ~ + K s + L~). In  addition, this part icular  
form is one such tha t  (H, K, L) will also be integers, and 
g has a value ½. The mult ipl ier  g is combined with e 1 
(rhombohedral) giving ½e 1 the basis element for the 
cubic representation: 

(h ~ + lc 2 ~ 1 ~ + hlc + kl  + lh) e 1 = I(H~ + K ~" + L 2) el 
! 

= (H 2 + K 2 + L 2) el. 

Thus we see tha t  the rhombohedral  cell is metrical ly 
equivalent  to a cubic cell and is indist inguishable by  
powder methods alone (at a fixed temperature:  etc.). 
I f  other da ta - - such  as optical data~-were available, the 
ambigui ty  might  be resolved. 

A similar case is provided by  a rhombohedral  cell 
with the crystal  cell angle 60 °, which has te t rahedral  
reciprocal-cell angles. This is equivalent  to a face- 
centered cubic cell and would be indexed as such using 

only powder data. The rhombohedral  quadrat ic  form 
for this case is 

(h ~ + k S + l ~ - ~hk - ~ k l -  ~lh) e 1, 

which can be reduced to ~ ( H 2 + K ~ + L 2 ) e l  in  cubic 
form. A recent report shows tha t  precisely this case has 
occurred for NiO. This has long been called cubic with 
the NaC1 structure, but  the recent investigation by 
Rooksby (1948) shows tha t  line split t ing occurs as the 
temperature  is lowered and tha t  the lattice is really 
rhombohedral.  At higher temperatures  degeneracy 
occurs with an apparent  increase in powder symmetry .  

Solution of linear Diophantine systems 
There is a well-known theorem concerning equations 
of the forms m l x  + m~y  = maz (10-1) 

an~t m i x *  + m a y *  = 1, (10-2) 

when we require the values of ml, m2, mz, x, y, z to be 
integers. The second equation (10-2), which might  be 
called a reduced equation, is obtained by setting m z z  = 1 
in equation (10-1). The corresponding integral solutions 
x, y of the reduced equation, if  such exist, are denoted 
by x*, y*. The theorem states tha t  i f m  1 and m 2 (integers) 
contain no common factor, and if  m3z is not zero, then 
there are an infinite number  of integral solutions x, y, z 
for such equations. The solutions for the general equa- 
t ion (10-1) can be constructed from the general solutions 
of the reduced equation (10-2). Part icular  solutions o f  
(10-2) can be found by inspection or by the Euclidean 
division algorithm (Fine, 1904, pp. 212, 342; Wright,  
1939, pp. 3-6). 

Let x °, y0 be a part icular  solution of (10-2), i.e. some 
pair of integers satisfying (10-2) with mr, m 2 relat ively 
prime. Then the general solution of the reduced 
equation (10-2) is 

x* = x ° - - m 2 t ,  ( l l -1)  

y* = y° + m l t ,  ( l l -2)  

where t is any integer. I t  follows tha t  the general solu- 
tion of (10-1) is 

x = mazx*  = m a z ( x ° - m ~ t ) ,  (12-1) 

y = m3zy* = m a z ( y ° + m l t ) .  (12-2) 

Since x °, y0, ml ' m2 ' ma ' t, z are integers, the values of 
x, y will also be integral. 

This method can be used to solve equations of the 
form (2), expressing all of the remaining M's  and N ' s  
in terms of some M i  and N~ which are known to be 
different from zero. In  the example to follow, only three- 
term equations like (10-1) were used, but  methods for 
four - ' and  higher-term equations are equal ly  simple. 
When solving equations of the form (10-1) it must  be 
remembered tha t  m 1 and m~. must  have no common 
factor if  the previous methods are to apply. In  the 
event tha t  m 1 and m9 have a common factor, ehen either 
(a) the factor common to m 1, m 2 must  also be a factor of 
m3z, or (b) no integral solution other than  x = y = z = 0 
exists. These facts are of use in solving equations of 
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the  form m 13/1 + m~ M~ = ms Ms. This case m a y  arise 
for a t e t r agona l  or hexagona l  crys ta l  wi th  few powder  
lines so t h a t  no equat ions  of fo rm (3) are fore, d, or if  
the  q values  re la ted  by  an  equa t ion  of form (3) appea r  
in no o ther  equat ions.  

Te t r agona l  a n d  hexag()nal  crystals  

To d e m o n s t r a t e  the  me thod ,  we will use the  d a t a  and  
relat ions presei~ted by  Hesse  (1948) for the  subs tance  
W~B. These data,  and  relat ions are:  

q~ = 0.0847, qa = 0.2698, qv = 0.4025, 

q~ = 0.1694, qa = 0.3179, qs = 0.4229, 

qs = 0.2334, q, = 0.3384, q9 = 0.5724, 

for which Hesse  found  the  independen t  relat ions 

(a) 2ql = q~, (d) q~ + qa = q~, • 

(b) ql + qs = q~, (e) ql + q6 = qs. 

(c) 2q~ = q6, (f)  q~ + qv = q~, 

and  the  dependen t  relat ions 

(g) q6 = 4ql, (i) q8 = 5ql, 

(h) q7 = qs + 2q~, (J) q9 = qs + 4q~. 

We note  t h a t  no relat ion including q4 was discovered. 
F i r s t  we note  t h a t  r~lations (a), (c), (g) and  (i) are of 

fo rm (3), a n d  hence we conclude t h a t  the  crysta ls  are 
cubic, t e t ragonal ,  o r  hexagonal .  The cubic case is ruled 
out  since the  q 's  are not  of the  fo rm ~h~b~(h~+ lc~+ F). 
Accordingly  only the  t e t r agona l  and  hexagona l  classes 
r ema in  for considerat ion,  bu t  no assumpt ion  need be 
m a d e  as to whe ther  it  is one or the  other.  

On the  basis of (a), (c), (g) and  (i) we find 

q~ = [M 1, 0], q~ = [M~, 0], q6 = [M6, 0], qs = [M~, 0], 

exac t ly  as Hesse  did. We  now solve for the  o ther  M ' s  in 
t e rms  of M 1, the  smallest  non-zero M.  Clearly M 1, M 2, 
M 6 and  M s cannot  be zero, since the  con t r a ry  assump-  
t ion requires ql = q2 = q6 = q8 = 0. 

Rela t ions  (b), (d) and  (f)  require 

Ns  = N5 = ArT =.N~, 

since Nx = O, a n d  we have  

qs = [Ms, Na], qv = [My, Ns], 

q~ = [M~, Na],.  q9 = [ M 9 ,  N 3 ] .  

N e x t  we solve equa t ion  (b): q~ + qs = q~- 

- M s + M ~  = M .  (13-1)  

- M *  + M *  = 1. (13-2) 

A par t i cu la r  solution of (13-2), found  by  inspection,  is 
M ° = 0, M~ = 1. Then  

M *  = M ~ + t  = t, 

M*~ = MO+t- -  l + t ,  

and  Ms  = M1 t, qa = [Mlt, Ns], 

M~ = M l ( l + t  ), q5 = [M~(l+t),Ns].  

Simi l a r ly  we solve equa t ion  (d): q~ + q~ = q~; finding 

M 5 = Ml t '  a n d  M7 = 3/1(1 + t ' ) .  B y  the  previous  s tep 
M 5 = MI(1 + t )  a n d  we find t' = 1 + t .  Then  

M 7 = M l ( 2 + t  ) and  q7 = [MI(2+t),Na]. 

E q u a t i o n  (f)  leads to 

M 2 = M ~ t '  and  M 9 = M T ( l + t ' )  

and  hence to 

M 2 = M l t ' ( 2 + t  ), M 9 = M l ( l + t ' ) ( 2 +  0 . 

We  fu r the r  see t h a t  t' m u s t  be u n i t y  or greater ;  t' canno t  
be zero since M~ camlot  be zero (N 2 = 0). The  forms  
of q2 and  q9 are 

q~ = [Mlt'(2+t),O ] and  q9 = [Ml(l  +t ' ) (2+t) ,Na].  

Solving equa t ion  (e) we find 

q6 = [M~t",0] a n d  qs = [ M ~ ( l + t " ) , 0 ] ,  

a n d  we note t h a t  t" m u s t  be u n i t y  or greater .  F ina l ly  
equa t ion  (j) leads to 

M a = M14t" and  M 9 = M14(1 + t " ) .  

I n  previous steps w e  found  

M a = M ~ t  a n d  M g = M ~ ( l + t ' ) ( 2 + t  ). 

E q u a t i n g .  these  separa te  resul ts  we have  relat ions 
be tween  the  var ious  t 's: 

4t" = t  a n d  4 ( 1 + t ' ) =  ( l + t ' ) ( 2 + t ) .  

Replac ing  t by  4t" in the  second and  rear ranging ,  we 
have  2 

2 + 4t"" 

The ouly value of t" which permi ts  t' to  be an  integer  is 
t" -- 0. H e n c e  t" = 0, t = 0, t' = 1. Solving equa t ion  
(g) (or by  inspection) we find M s = 4 M  1 = t"M1, so 
t h a t  t" = 4. Hence  M s = MI(1 + t " )  = 5 M  v 

The fo rm of all q's except  q4 is now de te rmined:  

q~ = [M~, 0], q6 = [4M~, 0], 

q~ = [2M~, 0], q7 = [23/1, Ns],  

q3 = [0, N3], qs = [5M1, 0], 

q5 = [M1, Na], q9 = [4M~, Ns].  

The sequence of M values corresponds to a t e t r agona l  
crys ta l  wi th  M~ = 1, 2, 4, 5, 8, 9 , . . .  

M ~ - -  1 (h,k) = (1,0), 

M~ = 2 (h,k) = (1,1),  

M~ = 4 (h ,~ )  = (2 ,0 ) ,  

etc. ,  

and  with  N s - F =  1,4, 9, . . . .  Clear ly  N z cannot  be 
zero since 3/s  = 0. The sequence of M values does  no t  
m a t c h  a n y  sequence for a hexagona l  crystal .  

To de termine  which choice of  _M I and  -~s is t]ae sim- 
plest  permissible,  it  is necessary  to in t roduce  q4 into 
the  scheme. Dil igent  search would lead to the  equa t ion  
10ql + q3 = 4q~. I f  this  re la t ion had  no t  been found,  we 
could proceed by  a t r ia l -and-er ror  procedure.  

F i rs t  we note  t h a t  

q4 = 0.2698 a n d  qs = [0, Ns] = 0.2334, 
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and conclude tha t  qa is not of the form [0, mNs]  nor of 
the form [0, l~] for any  small  values of 1 a and 1 a. We also 
note tha t  q4 is not of the form [Ms, 0] if  M a and M 1 are 
any  of the small  integers of the form aS+ b% Accord- 
ingly we conclude tha t  qa must  be of the form [Ms, N4]. 
I f  we let M 1 and N s assume possible low-order values, 
we find tha t  the pair (M1, Na) equal to (2, 4) permits 

E qa to be fitted to the form 5 ~ - ,  and the problem 

is solved. 

q~ = [2,0] (110) q6 = [8,0] (220) 

q2 = [4, 0] (200) q7 = [4, 4] (202) 

qa = [0, 4] (002) qs = [10, 0] (310) 

qa = [5,1] (211) q9 = [8,4] (222) 

q~ = [2,4] (ll2) 

Addi t ional  useful relations 

I f  we find a pair of relations of the form 

ql +q~. = q3, q~ + %  = .qa, (14) 

then the crystals cannot be orthorhombic,  monoclinic, 
or triclinic, but  can be cubic, tetragonal,  or hexagonal. 
This follows from a well-known theorem (Carmichael, 
1915, p. 14) concerning simultaneous Diophant ine  
forms. The theorem states tha t  the equations 

x2 + y ~ = z ~, y2 + z2 = t 2 (15) 

have no solution in integers unless at least one is zero. 
The only integral solutions are y = 0, x = z = t, and 
x = y = z = t = 0. The remainder  of the proof follows 
tha t  given for equations of type (3). Tha t  cubic, tetra- 
gonal and hexagonal  crystals can satisfy the equations 
(14) is easily verified. The proof tha t  cubic and tetra- 
tona l  crystals can satisfy the simultaneous equations 
(14) follows from the theorem tha t  any  integer is expres- 
sible as a sum of four squares. 

When hexagonal  crystals satisfy the simultaneous 
equations (14), they  also simultaneously satisfy a more 
severe set of conditions. I t  can easily be verified by 
inspection tha t  if  the first pair of the following equations 
are satisfied then the second pair can also be satisfied 
for some set of integers which satisfy' the first pair: 

2 2 (h~+ hl]cl+ ]Cl)+ (h~ + h~]c~ + @ = (hl + hs]cs + @,] 
(h~ + h~]C2 ÷ ]C~) ÷ (h~ + hs]Cs ÷ ]C~) = (h~ ÷ ha]c, ÷ ]c~),| 

hl+h~. = ha+its ' [ (16) 

h2 + ha = h a + ]ca. ) 
An example of a solution to the above equations is 

(h~,]c~) = (0,1), (h~,]c2) = ( 4 , - 2 ) ,  

(ha, k s ) = ( 1 , 3 )  and (h a , k s ) = ( 5 , 0 ) .  

Linear dependence relations 

In  tlLe first section of this paper it was shown tha t  
the numbers  q can be regarded as vectors in a linear 
vector space of one, two, three, four, or six dimensions 
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corresponding to t~e cubic, tetragonal  or hexagonal,  
orthorhombic,  monoclinic, and triclinic classes of 
crystals. This implies tha t  the m a x i m u m  number  of 
l inearly independent  vectors (q numbers)  is equal to 
the dimensional i ty  of the vector space. Thus, i f  the 
crystal  is cubic, all of the q numbers  can be expressed 
as a rat ional  mult iple of any  one of the q numbers.  For 
a tetragonal (or hexagonal) crystal, rat ional  linear com- 
binations of two q numbers  will generate all the remain- 
ing q numbers.  Corresponding combinations of three, 
four, or six q numbers  will generate all the q numbers  
for the orthorhombic,  monoclinic, or triclinic classes if  
the e numbers  are non-degenerate. These considerations 
make possible a direct test for crystal classes which is 
dist inct  from the previous tests based on Diophant ine  
forms and is more powerful than  the previous tests 
since any  relations of form (1) will serve; special rela- 
tions of form (3) are not needed. 

To perform the test we obtain all of the q numbers  
as before and obtain all independent  relations of form 
(1). For the present purpose we include more relations 
than  are used for the analysis using Diophant ine  forms. 
In  part icular  we include relations among four or more 
of the q numbers  (which satisfy the predetermined 
limits of error), so tha t  the m a x i m u m  possible number  
of relations is at  hand. I f  the number  of q numbers  
exceeds the number  of relations by six, then  the test 
fails. However, this case will not arise if  all relations 
have been found. 

Suppose tha t  we have a q numbers  and tha t  we have 
found/?  relations of form (1). We write the coefficients 
m~ of the relations in mat r ix  form 

--(m) 

\ rap1 . . . . . . . . .  m ~  

and then  determine the rank of the resulting matrix.  
The rank of the mat r ix  is the order of the largest non- 
zero de terminant  contained in the matr ix.  I f  the rank 
of the mat r ix  is r, then r of the q numbers  can be ex- 
pressed as rat ional  l inear conbinations of the remaining 
(c¢-r) q numbers.  Then ( a - r )  is the number  of l inearly 
independent  q numbers  or the order of the vector space. 

When  the mat r ix  (m) is being written, we can omit  
any  relations of form (1) which are implied by  other 
relations which we include in it. If, for example,  we 
have relations 

2 q l -  q2 = 0, 2q~-  q4 = 0, 4 q l -  q4 = 0, 

then any  two imply  a th i rd  of these. The rank of mat r ix  
(m) is not altered by  including or omit t ing a relation 
implied by  others which are included. 

Having  found the number  ( ~ - r )  of l inearly indepen- 
dent  q numbers,  in principle we could then  find the e 
numbers  which are the bases of the vector space. Sup- 
pose tha t  the vector space turns out to have six dimen- 
sions and tha t  ql, q~, .-., q6 are a l inearly independent  



276 

set of vectors covering the space" by rational linear 
combinations. Each of these q numbers is of the form 

ql = Q l l e l +  Ql~e2+ ... + Q~6e6, 

or in general in matrix form 

t .-- 
qa = ea . (17) 
q4 e4 

q5 Q6 % q ~ 1 "'" Q 6 6 /  % 

The rank of matrix (Q) must be six since the six q 
numbers are linearly independent, and hence the 
determinant of the matrix (Q) does not vanish. This 
insures the existence of a matrix (Q-l), the matrix 
inverse to (Q); i.e. 

(Q-X) (Q) = (E) = diggonal idenVity matrix. (18) 

If  we then multiply the matrix equation (17) by (Q-l) 
by left-muItiplication, we will have solved for the e bases 
of the vector space, ' 

• (Q-1) (q )  = ( Q - 1 ) ( Q ) ( e )  = ( E ) ( e )  = (e). (19) 

Actually we cannot perform the calculation implied by 
(19) until we know the elements of the matrix (Q). This 
does not affect the argument since we assert only that  
a non-singular (Q) matrix exists, and that  this insures 
the existence of the set of e bases once a set of linearly 
independent q numbers is found. 

As an example of this method, we can refer to the 
second tetragonal crystal example presented by Hesse, 
that  for Mo-B. The previous tests based on Diophantine 
forms fail to determine the class of this powder pattern 
since no relations of suitable form are found• Hesse 
found three relations 

q l + % - q a  = O, q l + 2 q 2 - 2 q a  = O, q ~ - 2 q 4 + q 6  = O, 

• with the matrix ( 011 ) 
2 - 2  0 = (m). 

1 0 - 2  

It  is easily verified that  no third-order determinant con- 
tained in this matrix vanishes, and that  there are among 
the set ql, q~, qa, q4 and q6 only two linearly independent 
q numbers. Hence the crystal is at least tetragonal or 
hexagonal. To establish the class completely, we need 
to find more independent relations since there are eleven 
q numbers listed by Hesse. Six additional independent 
relations were found (with a maximum deviation from 
zero of 0.0003)• They are 

7ql + % -  2q7 = 0 (0•0003) 

q5 + 2q6- 2qs = 0 (0.0000) 

ql + q~ + q s -  qs = 0 (0.0002) 

q l -  q~. + q4- q s -  q~ + q9 = 0 (0.0002) 

q s -  q4 -  q6 + q6 + q�- ql0 = 0 (0-0000) 

2 q ~ - 2 % + q s - 2 % + q n  = 0 (0.0001) 

J I N D E X I N G  P O W D E R  P H O T O G R A P H S  

The complete matrix for the system then is readily 
sho~m to have rank nine, and hence all relations are 
independent, and only two of the eleven ff numbers are 
linearly independent. This confirms the class of the 
crystal as tetragonal or hexagonal. We have definitely 
excluded the orthorhombic, monoclinic, or tric]inle 
classes if no accidental coincidences among the e 
numbers occur. 

I t  is not necessary to evaluate all of the sub-deter- 
minants contained in the matrix in order to determine 
its rank. There is a theorem which states that  the rank 
of a matrix is unchanged if the elements of a row 
(column) are added to the corresponding elements of 
another row (column) of the matrix (B6cher, 1907, 
chs. 3, 4, 5). By use of such elementary transformations 
the matrix is readily transformed to the equivalent 
matrix 

t l !  2 - 2  0 0 0 0 0 0 0 0 
1 0 1 - 1  0 0 0 0 0 0 0 ~  
o o ~ 1 0 - 2  0 1 0 0 0  0 

0 0 0 0 1 - 2  0 0 0 0 
0 0 0 1 2 0 --2 0 0 O. 

• 1 0 0 1 0 0 - 1  0 0 O 

~ i  - 1  0 1 - 1  0 - 1  0 1 0 0 
0 1 - 1  0 - 1  0 1 1 - 1  0 
2 - 2  o o o o 1 - 2  o l j  

fo o 
0 

0 0 
0 

~ 0 
0 
0 
0 
0 

0 - 1  0 0 0 0 0 0 0 0 ! \  t 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 - 1  0 0 0 
0 0 0 0 0 0 1 0 0 
O. 0 0 0 0 0 0 1 0 O /  o/ 0 0 0 0 0 0 0 0 - , 1  
0 0 0 0 0 0 0 0 0 

which clearly has rank nine. (This transformation was 
performed very quickly and was accomplished in 
nineteen steps. Fewer steps would suffice since we need 
zeroes only on one side of the non-zero diagonal.) 

Another procedure which suggests itself is to examine 
a subset of equations, such as the first three listed for 
this example, and to express the dependent q numbers 
in terms of the linearly independent ones. Thus we can 
express q3, q4 and q6 as linear combinations of ql and q2- 
These are then substituted in the remaining equations 
to see whether or not they are satisfied. If  the original 
set (qD q~. in this case) of q numbers is a complete set, 
then all the remaining g numbers will be expressible 
as some linear combination of them. If  not, then it will 
not prove possible by these substitutions t o  express 
the remaining q numbers in terms of ql and q2, and the 
set will have to be augmented. 

If  this variation is employed, care must be exercised 
to make sure that  the original subset, selected as being 
linearly independent, does not actually contain more 
q numbers than are really needed. This case could arise 
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if, for example, we had a tetragonal crystal and a subset 
of three relations among six q numbers. For this subset 
we would necessarily find at  least three independent 
q numbers, whereas actually only two are needed. I f  
we solved for three of the q numbers in terms of the 
remaining three and then substituted these results in 
the remaining relations, they would necessarily be 
satisfied. We might then erroneously conclude that  the 
crystal was orthorhombic. In the example worked out 
above, using this short procedure we found two in- 
dependent q numbers (confirmed by the full procedure). 
We might have been in error when we called the crystal 
tetragonal or hexagonal. I t  conceivably could be cubic 
on the basis of the subset of three relations with only 
one of the q numbers being linearly independent. This 
would require that  a linear dependence relation exist 
between ql and q2 of the form mlq 1 = m2q ~. Since no 
such relation exists, the short procedure was valid in 
this case. 

In seeking the additional relations among the q 
numbers needed for the linear dependence test, tables 
were prepared of: (a) multiples of the q's up to 10q; 
(b) qk+l--qk; (C) qk+~--qk; (d) qk+a--qk; (e) qk+4--qk; 
(f) 2qk~l--qk, etc. The next step consists in examining 
these tables for numbers which are equal within the 
permitted limits of error. For the present purpose this 
limit was set at 0.0003 in sin 9 O. I f  the limit is not made 
so small, accidental equalities of a spurious nature 
will be listed and the procedure will fail. As Hesse has 
stated, the use of focusing camera,s is almost a necessity. 

The relation 7q1-t- q6-  2q7 = 0 (0.0003) was found 
by noting that  the quant i ty  2q~-q6 was equal to 7q~. 
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The relation q3 - q4-  q6 + qs + q9 - ql0 = 0 (0.0000) was 
found by noting that  (ql0- %) + (q4- qa) = (q6- q6). Simi- 
larly 2(q s -  q6) = q5 becomes q5 + 2q6- 2qs = 0 (0.0000). 
The equality ( q l l  - -  q9 )  ---- 2(qa-- q~) + ( % -  qs) becomes 
2q~-2qa+qs-2%+qx  1 = 0 (0.0001). I t  is possible to 
guard against spurious relations by cross checking to 
see whether they imply relations which are not of the 
desired precision. Thus the relation (spurious) 
qs-q6 = qT-q5 (0.0004) was rejected because of the 
relation 2(q s -  q6) = q5 (0.0000). These relations, ff both 
correct, taken together require 2(q s -  q6) = 2(q7- qs), or 
2q7 = 3q5. The latter is not correct since 2q~ = 0.8722, 
while 3q5 = 0.8730, the difference 0.0008 being far 
outside the acceptable range. The rejection of 
q s -  q6 = q~-  q5 also implies rejection of q s -  q~ = q6 - %. 

I t  must be emphasized tha t  the selection of these 
relations must be done with care, since this is the only 
point in the procedure at  which observational or sub- 
jective errors enter. The outcome of the remainder of 
the procedure is completely dependent on the care used 
at the start. 
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A table of atomic scattering factors is given for the elements i to Cu for values of (47r sin 0)/h up to 30. 

In applying the sector method of electr6n diffraction 
(Viervoll, 1947) we have for some time made use of new 
tables of atomic scattering factors, f, which cover a 
greater range of (sin 0)/A than the corresponding tables 
used by the X-ray drystallographers. Our f values 
(Table 2) are given as functions of s =(49 sin 0)/2 (A.-1), 
where 0 is the Bragg angle. 

The calculations of the f values are mainly based on 
those of James & Brindley (1931), who give the functions 
for values of s up to about 14. We have extended the 
s range to 30. For our purpose we did not find it neces- 
sary to apply wave functions 'with exchange' which 
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would introduce very small effects for higher s values. 
These effects would be somewhat greater for smaller 
s values (Brindley & l~idley, 1938), but may still be 
assumed to be without significance for ordinary struc- 
ture determinations. 

The atomic scattering factor may be considered as 
a sum of electronic scattering factors, each of which 
corresponds to an electron of the atom. James & 
Brindley found that  a suitable linear transformation of 
the s scales could bring the scattering factors of the 
same electron group (same n and l) in different atoms to 
coincide very closely. 
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